Dr. Ariel Rosenfeld

Optimizing Traffic Enforcement: From the Lab to the Roads

Ariel Rosenfeld Oleg Maksimov and Sarit Kraus; Optimizing Traffic Enforcement: From the Lab to the Roads, GameSec 2017 [40% acceptance rate].
Road accidents are the leading causes of death of youths and young adults worldwide. Efficient traffic enforcement has been conclusively shown to reduce high-risk driving behaviors and thus reduce accidents. Today, traffic police departments use simplified methods for their resource allocation (heuristics, accident hotspots, etc.). To address this potential shortcoming, in [23], we introduced a novel algorithmic solution, based on efficient optimization of the allocation of police resources, which relies on the prediction of accidents. This prediction can also be used for raising public awareness regarding road accidents. However, significant challenges arise when instantiating the proposed solution in real-world security settings. This paper reports on three main challenges: 1) Data-centric challenges; 2) Police-deployment challenges; and 3) Challenges in raising public awareness. We mainly focus on the data-centric challenge, highlighting the data collection and analysis, and provide a detailed description of how we tackled the challenge of predicting the likelihood of road accidents. We further outline the other two challenges, providing appropriate technical and methodological solutions including an open-access application for making our prediction model accessible to the public.